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We develop an approximate theory of stationary propagation of the planar front 

of a two-stage parallel exothermic reaction in a condensed medium and in a gas. 
In constructing the solutions we use the method of matched asymptotic expan- 
sions. As parameter of the expansion we employ the ratio of the sum of the ac- 
tivation energies of the reactions to the terminal temperature, the latter being 
determined in the course of solution of the problem. We show the characteristic 

limiting modes corresponding to the various parameter values which appear in 
the problem. For each of these modes we obtain approximate analytical expres- 

sions for the wave velocity, the distribution of concentrations, and the terminal 
temperature. 

1. Statement of the problem. The stationary propagation of the planar 
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front of the two-stage parallel exothermic reaction As f- A, +- A, in a given medi- 
um can be described by the following system of equations and boundary conditions: 

(1.1) 

m++u,paqT)=O 

&(Dp-+-m$$ +uoprD2(T)=0 

&(Dp-$)- m~--a,p(~,(T)+~2(T))=O 
C&(T)= K,exp , (I&(T)= Ksexp 

x=-o0 a, = 1, T = T_, 
T, = T- ‘+ c-l (QsI, + QA+) 

al_ = a2_ = 0 

x=+00, a,+ = 0 dT da1 daa , xzdl:zdz= 0, ~1+f~,+= 1 

Here a,, al and u2 are the mass fractions of the material A O, AI and A, ; p is the 

density ; m is the mass combustion rate ; c is the heat capacity ; h is the thermal con- 

ductivity ; D is the diffusion coefficient ; R is the gas constant; Q1 and Qa are ther- 

mal reaction effects ; K1 and Ks are exponential factors; and & and E, are activa- 
tion energies. 

We assume that the density and all the thermophysical characteristics of the medium 

retain constant values and that the chemical reactions proceed in the first order, their 
rates being dependent on the temperature according to the law of Arrhenius. 

The two-point boundary value problem (1.1) consists of determination of functions 

cl (z), a2 (z), T (z) and eigenvalues mand ul+ For this problem to have a solution 
we assume that functions (&and a2 differ from zero and are determined by the corre- 

sponding expressions in Eqs. (1.1) everywhere except for a small temperature interval 

T_ < T < T, where these expressions vanish [ 11, 

The kinetic scheme assumed here approximates a reaction of the form 

Ao + 4 -A,, Ao + Bz -f As 

at an excess of the materials B, and B 2 ; it can also serve as a model for the reaction 
Aa - Ae - A, -t AZ, in which the stage A, + As proceeds slowly in an inductive 

mode. An experimental study was given in [2], for example, of a parallel two-stage re- 
action in a container ” 

The problem (1.1) has the two first integrals 

h dT -- --- 
cm dx 

aI ---a2 -T_ (1.2) 

al+ a, = 1 - a0 

We shall use the first of the equations (1.2) in place of the first of the equations (1.1). 
Taking the temperature T as the independent variable, we can write the initial value 
problem in the form 



(1.3) 

b,-2, bp=$ a==a,t, GE= El;:E2 _ 
T--T_ m2c Kl 

‘k= 
T+-T_ ’ p= h(K1+Kzf ’ OK= KI+& 

T- El + Et 
a = I’, _ T_ T P=--q- 

CX’Q 

r= Qla+Qqt~l-a) z a(2sq-l)+1-6aq 

Here bi, B,, 6s and B, are the unknown functions and i.& and a are eigenvalues of 

the problem. 
We analyze this problem by the method of matched asymptotic expansions [3 - 61. 

We assume that #i $9 1; for this to be true, it is sufficient to assume the simultaneous 

satisfaction of the inequalities 

2, Propagation of the front of A reaction in a condensed phase. 
Equations describing the pro~gation of the front of an exothermic reaction in a conden- 

sed phase are obtained from the Eqs.(l. 3) by formally setting ,!, = 00. Then 

dbl 
up x = 6jy 

1 - ah - (1 - u) b2 

x-(I--_)bzeXP - L 

P5_& + a) 

~+a I 

‘z: = 0, - 61 = b, -= 0; r = 1, bl = 6, = 1 (2.3) 

It is necessary here to single out two regions with differing asymptotic behaviors of the 
solutions: a small neighborhood of the point 1; = 1 (interior region) and the remaining 
portion of the interval (0, 1). In the interior region we introduce in place of z the vari- 
able r*=fi(l-t) ; we then seek solutions in each of these regions in the form of 
exterior and interior expansions. 

(2.41 
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b2 w = no (PI b20 tz*> + n1 (B) b,l (T*) + . . . 
bz CT*) = No (B) ho0 (4 + N1 (B) ho (T) + . . . 
n, / n, - 0, Iv1 / N, - 0, (3 4 00 

In both regions we seek expansions for the eigenvalues P and o in the form 

P = ‘PO (P) PO + ‘PI(B) II1 + * * -9 cpl/ cpo - 0, P -+ 00 

a=go(B)ao+g,(B>a1+..., gJg,-+O, fJ--+M 
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(2.5) 

(2.6) 

(2.7) 

The exterior expansions must satisfy the boundary conditions at ? = 0 and the inter- 
ior expansions at r = 1 (IT*== 0). A correspondence between the expansions in the ex- 
terior and interior regions is established from the matching condition, under which both 
expansions written in the same variables, are required to possess the same limiting beha- 
vior [3 - 51. We limit ourselves to a determination of two terms in the expansions 
(2.4) - (2.7). 

Consider first the case oE = ‘/%. Dividing (2.2) by (2.1) and integrating, we obtain 

b 1 3 b,, a = ~JK (2.8) 

After changing over to the variable T* and substituting into the relations (2. l), (2.4). 
(2.6) - (2.8), we obtain, to within terms of the highest order of smallness in p , 

(2.9) 

Here we have used the equation f. = 1 which follows from the boundary conditionsat 
‘t* = 0 . It is evident from (2.9) that we must choose 

‘p. = b-‘exp (-p/2) (2.10) 
It then follows from (2.9) that 

blo = 1 - 2 ~+2J$%xp[- P ] 
2(1 +a) 

(2.11) 

Taking the expression (2.10) into account, we see that the solutions for bI in the exterior 
region are exponentially small, Therefore, in the exterior expansions (2.4) and (2.5) 

b zoo = bl; = b,,” = b,; = 0 

The matching condition then reduces to the requirement that 

b 10 +- 0, bI1 + 0, z* -+ cm (2.12) 

Applying (2.12) to Eq, (2.11). we find 

PO = 2(1 3_ a), blo = exp C ‘* - 2 (1 + a) 1 (2.13) 
Proceedine now to obtain two-term expansions (2.4) and (2.6), we obtain, from Eq. (2.1) 

in thevariable %* 
‘pi = ‘pl / B = BS2exp (-- 0 I 2), n, = fi = fi -1 (2.14) 

dbn 1 r*s z* 
dz*= 

IL1 

- 
2(1 +a) 2 (1 + 4 + 2(1 +a) 

i---x9 
1 
- 

2(i’ie) 11 x (2.15) 

[ 
%’ 

exp - 
2(1 +a) 

3 * bII (0) = 0, bIl (r* --, cm) = 0 
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From (2.15) we find 

We write in dimensional variables a two-term expansion for the mass rate of propaga- 

tion of combustion 

2 >I x (2*16) 
We note that the rate is determined by the sum of the factors multiplying the exponen- 
tial. 

Consider now the case 0 < UE < ‘1,. Then, introducing as before the variable T*, 

we obtain from (2.1) and (2.2j 

wl 
---I+= = 

I-abl-(i-a)ba 

QKf-P/~-~bl-(i-~)h exp 
- (1 -col@-g= (1 

- p (1 - GE) - ‘* yy:E’ 1 

1 (2.17) 

(2.18) 

As before, it then follows from (2.3) that IZ~ = f. = 1. Dividing Eq. (2.17) by (2.18). 

we can obtain the estimate c1 

- = ’ texp I-- (1 - 24E) p]) l-a 

From this it follows that in the expansions (2.6) and (2.7) we must set 

g, = 1, a, = 1, gr = exp ~-(l--2m3>fIl, ‘p. = fi-‘exp 1-4~ / fJ1 

Taking into account the dependence of y and a, we obtain from (2.17) and (2.18) 

dblo 
-PO-= G@=p[--z-,, ho(')=' (2.19) 

(2.20) 

In analogy to the previous case, the condition (2.12) holds and we also have b,, --t 0, 
b,, -+ 0 and z* --t 0. Then from Eqs. (2.19) and (2.20) we obtain, respectively, 

PO = (1 + 4% t b,, :- exp[-21 

bzo = exp 
?” (1 - GE) 

- 
i+a I 

In determining the successive terms of the expansion we must set 

g1 = @PI = B-' exp [-(1-2~~) fJ1, n, = fI = B-’ 
Then 
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bll (0) = b,, (0) = 41 (=) = b2, (m) = 0 
From this we obtain 

In dimensional form the two-term expansion for the mass combustion rate has the form 

(2.21) 

We note that the expression (2.16) cannot be obtained from Eq. (2.21). There is no 
need to treat the case l/a ( oE < 1 separately since it is completely analogous to 
the case considered. 

3, Propagation of the reicttoa front in gas, In this case L is finite. 
Side by side with the expansions (2.4) - (2.7) we seek a solution for B, and & in the 
form of exterior and interior expansions 

We consider first the case oE = ‘12. Dividing the third equation of (1.3) by the fourth 
one and integrating, we have 

B 1 z B,, b, E b,, a = UK (3.3) 

The problem then reduces then to the following 

dbl 
dz= L+=& P~=(~-B,)-l(l-bb,)exp[- ~I:~~~] (3.4) 

z = b, = B, = 0, z = b, = B, = 1 

From the conditions at the hot boundary and from (3.4) it follows that 

60 = fo = 1, fl = B-l, q. (B) = B-2exp 1-B I21 

Similar to what was done in Sect 2. we have 

(3.6) 

(3.6) 



then 

(3.7) 

(3.8) 

In the exterior region we have, from the matching condition, upon taking the relations 

(3*6J into account* $7, (B) = 1, 6, 1= 1, B,,P = B,$ z 0 

It then follows from Eq. (1.9) that 

(3.91 

From the combination of the relations (3.9) and (3.10) with (3.8). we obtain 

c1 = 4, /.A@ = 8L (1 + 0)” (3.11) 

B ) 

Condnuing the calculation of the successive terms of the expansion it is necessary to set 

(3.13) 

-+- cq2LfL - l), xdx j/-* _ c-r(l .+x) = Js(x) (3*14) 

From the condition of matching witb B,,* we obtain 

2.5. =2(1-j- a>J*(oo) -12-~(~i~)(~-~),J,(.)=il/; “;;;+rj (3.15) 
t”O 

J, (co) = 2.688 

We have here used the fact that in the exterior expansion 
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In dimensional form the expression for the mass combustion rate is given by 

-L(~)(&)jl+ qgq&-3]} X (3.17) 

T, = T- + c-l [&ox+ Qs (I- ~K)I 

We consider now the case 0 ( (JE < ‘i2. As in the case of the condensed medium, 
we assume 

a = 1 + exp [-(1--2u~)~l [ai + a2 ! PI (3.18) 

Then, far a two-term expansion in the interior region we can obtain 

dbn 
-dT*= b,,(O) = 0, b2dO) = 0 (3.20) 

dB,a 
!Jo--dr*= 3Kbll 1 - 810 ’ lo 

B (o)=l 

dBao 
%Podz* = - 

I- bK 

hl 1 _ &,, exp 
(I - GE) z* 

- 1 i+o ’ B2oW) = 1 

In the exterior region we seek a solution in the form 

No = F. = 1, blo = C3z=, Ni = Fi = /3-2, bi, = c,+ (3.21) 

B,,” = B,, = B,,” = B2: = 0, b200 = C5+, b2; = C,r= 

Integrating Eq. (3.20) and matching with (3.21), we obtain 

bll = - Lz*, Blo = 1 - -exP (s)(l f g) (3.22) 

B20=1-$$JJ, s ( ), J,(z)-iexp(- z(la~‘E)) X 
0 

T*oE i l+O 
xdx 

VI - e-” (I + 5) ’ 
bzl = _ l+o L - 

cE Js(oo) 
dx 

I- bK 
al=-Js(50), &=I, &=I 

25K 

For the successive terms of the expansion we obtain 

&a 
- = -&$y Lz*, d+ bl2 (0) = 0 (3.23) 



B2d (1 - &id + (r* i- &,)(I - &l)I, 

b22 (0) = 0 

e-5 exp 1 [ z* (I - GE) - I$_0 1 
After integrating, we have 

(3.24) 

Matching with (3.21) yields 

(3.25) 

~3.27) 

c 

exp 
i-*; 

-l+o;” I dX 
I- BlO(S) 

Assuming z* + 00, we have 

1 2-5, 
----_*-“--V- 

(1 -f-cqa + 
0 

x(i -0~) dx 

I 1+0 T 

In 8 dim~~io~al form the two-term expression for the mass combustion rate of the gas 
is written as follows : 

~~~~~xp(-~)~(~)~~~ -i_% x 628) 

(2.344 - L) - 3 
I> 
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4, Dl,cu,rion of the terulta, We have found two-term expansions for the 

combustion rate and the terminal combustion temperature. It is very important to take 

into account several terms in the expansion for the combustion temperature. Thus, if we 
take into account only the first term in the expansion for a , we have 

T+(o) = T_ + Q, I c 

The final temperature is equal to the adiabatic combustion temperature for the first re- 

action. Upon taking into account two terms in the expansion, we have, in the case of a 
condensed phase, 

T&=T_+++$+p 

and, in the case of a gas. 

[A$] (J!?$Lh) (4.1) 

Ty’=T_+++ +$ Jg (00 7 GE) =P - ‘;;clf + l(F) (4.2) 

As was shown in [S], the asymptotic expansions, obtained for b + 00 , describe the 

solution with sufficient accuracy even for fi = 0 (1). The value fi = 10 is typical. 

We note that in carryinp, out the expansions, fi was considered to be large but still un- 

known, and OK, bQ, GE - o(l/,). 

As an example we consider a reaction taking place in a condensed phase with the fol- 

lowing physicochemical parameters : Ei = 20 kcal/mole, E’, =3 25 kcal/mole,(aE= 
4//o), T_ =L 300 ‘K, c = 0,25 Cal/g* deg K”, Q, = 125cal/g, Q2 : 250 Cal/g 
(ffQ =’ ‘/a), K, / K,= 3,4 (OK- - 0.23). Then T+(o) = 800 “K, T+(l) = 880 “K, 

m (T+q/m (T+(l)) = 0.55. Similar results can be obtained also for the case of an exo- 
tnermic reaction in a gas. We point out here that for GE < 1/3 the expressions (2.21) 
and (3.28) for the mass rate have a form similar to that for the mass rate in the case of 

the occurrence of only a single first reaction, the effect of a second reaction being mani- 
fested in terms of the quantity T,. 

In the general case, when K, and K, are distinct functions of the pressure, the final 

concentration al+ and the temperature T, are also functions of the pressure. The adia- 
batic combustion temperature T+(l) is a root of Eqs. (4.1) and (4.2). These equations 

can be solved iteratively, for example, using T, co) from (4.1) as the initial value. 
Thus,when Ki = Kiopvl and K, = K2~pYar we have ~~ = Kiopvl / Klop”l -I- 

&p% An important characteristic of the process is the coefficient giving the variation 

of the combustion rate with the pressure, namely, v = L&mz / dlnp. It follows from 

the relations (2.21) and (3.28) that when 0 ( (TV ( l/z 

alnm i3T+ 
v = vt/,+ -- 

aT+ alnp 

Usually, dm / dT, > 0 and the sign of dT+ / dlnp , depending on the values of the 

quantities p, (Tg, E, and E, , can be either positive or negative. As a consequence, 
the coefficient v can be larger or smaller than it is in the case of the occurrence ofonly 
a single first reaction. 
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The problem of transition of a friable medium layer into a suspended state in the 

presence in it of an internal obstacle is considered. Problems of this kind are fre- 
quently encountered in practice in connection with heterogeneous catalytic reac- 

tions in reactors with suspended catalyst layer, heat exchangers, surface coating 

operations which involve the immersion of articles in a fluidized layer, etc. Cri- 

tical regions of the onset of fluidized state and the critical velocity of the stream 

are determined by the general method described in [ 1, 21. Results of experiments 
on the fluidization ofa layer with a cylindrical obstacle are presented. Compari- 

son of theoretical and experimental data shows a good agreement. 

1. The problem considered here is a particular case of the general problem of fluid- 
ization onset [l, 21. The latter reduces to the problem of the limit equilibrium of a 
body whose resistance to tensile stress does not exceed a certain limit u, which is con- 

stant for a particular friable medium and, generally, nonzero. 
It was shown earlier Cl, 21 that in the case of the plane problem the lines of principal 

stress along which normal stress components at small areas tangent to these attain their 
maximum a’s, while all shear stresses are zero, coincide with the integral curves z = 

xi (E, 77), Y = zs (g, q) of equation 
adx, == bdxi (1.1) 

(Condition 9 = con& separates one line of the set, z and y are Cartesian coordinates, 
and the E -coordinate is measured along the line q = const ) . Here a and b are com- 
ponents of the body force vector acting on the friable body in directions xi and xs and 
taken with the opposite sign. The body force is 


